Torsion effects on vortex filaments and Hasimoto soliton transformation in magnetars
نویسنده
چکیده
The role played by torsion of magnetic vortex line curves or filaments, in the equilibrium state of magnetars is investigated. When the magnetars equilibrium equations are written in terms Frenet-Serret frame it is shown that in regions of the magnetic star where the Frenet torsion is constant it induces an oscillation in the vortex filaments. By solving the magnetar equilibrium equation we shown the this behaviour also appears in the magnetic field. The first derivative of the gravitational potential with respect to the arc lenght of the vortex filament is shown to coincide with the Hasimoto soliton transformation of the Schroedinger equation for the constant torsion. Departamento de F́ısica Teórica IF UERJ Rua São Francisco Xavier 524, Rio de Janeiro, RJ, Maracanã, CEP:20550.e-mail:[email protected]
منابع مشابه
Hasimoto Transformation and Vortex Soliton Motion Driven by Fluid Helicity
Vorticity filament motions with respect to the Dirac bracket of Rasetti and Regge [1975] are known to be related to the nonlinear Schrödinger equation by the Hasimoto transformation (HT), when the Hamiltonian is the Local Induction Approximation (LIA) of the kinetic energy. We show that when the Hamiltonian is the LIA of Euler-fluid helicity ∫ u · curlu, the vorticity filament equation of motio...
متن کاملHelices, Hasimoto Surfaces and Bäcklund Transformations
Travelling wave solutions to the vortex filament flow generated by elastica produce surfaces in R that carry mutually orthogonal foliations by geodesics and by helices. These surfaces are classified in the special cases where the helices are all congruent or are all generated by a single screw motion. The first case yields a new characterization for the Bäcklund transformation for constant tors...
متن کاملDynamics of a planar vortex filament under the quantum local induction approximation
The Hasimoto planar vortex filament is one of the rare exact solutions to the classical local induction approximation (LIA). This solution persists in the absence of friction or other disturbances, and it maintains its form over time. As such, the dynamics of such a filament have not been extended to more complicated physical situations. We consider the planar vortex filament under the quantum ...
متن کاملMHD dynamo generation via Riemannian soliton theory
Heisenberg spin equation equivalence to nonlinear Schrödinger equation recently demonstrated by Rogers and Schief , is applied to the investigation of vortex filaments in magnetohydrodynamics (MHD) dynamos. The use of Gauss-Mainard-Codazzi equations allows us to investigate in detail the influence of curvature and torsion of vortex filaments in the MHD dynamos. This application follows closely ...
متن کاملHelices , Hasimoto Surfaces and B
Travelling wave solutions to the vortex lament ow generated by elastica produce surfaces in R 3 that carry mutually orthogonal foliations by geodesics and by helices. These surfaces are classiied in the special cases where the helices are all congruent or are all generated by a single screw motion. The rst case yields a new characterization for the BB acklund transformation for constant torsion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005